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1. The d i f ferent ia l  equat ion of f i l t rat ion in curvf l ineat  orthogonal  

coordinates corresponding to the flow under consideration. Let us as- 
sume that  po ten t ia l  mot ion  of a l iquid  or gas occurs in some region 

of  space occupied by a porous med ium.  We choose a curvi l inear  or- 

thogona lu - ,  v - ,  i nd  w-coordina te  system in which each coordinate sur- 

face of a s ingle  fami ly ,  e . g . ,  u = const, coincides  a t  a g iven  instant 
with one of the qu ipo ten t ia l  surfaces ~o = const, where q (u, t) is the po-  
ten t ia l  of the mass f i l t rat ion rate  averaged over the area of the equi-  

po ten t ia l  surface F(u), i . e . ,  of the mass f i l t ra t ion ra te  corresponding 
to some average  values of the coordinates v.  and w.. 

Let us consider a layer  e l emen t  of the porous med ium between the 
areas F(u) and F(u) + (dF/du)du. We use a procedure common in der iva-  

tion of the cont inui ty  equat ion m find the mass which accumula tes  in 
the layer  in the t i m e  in terval  dr, 

O~p dF O~ du) 

~dF O(p dF O"q) 8~r ] 
= - L T 2  -o~ d~ + -7g ~ (d~): + F (~) ~ d~ tit. 

Omit t ing  the term of the highest  order of smaliness,  we obtain 
the following expression for the accumula ted  mass: 

dF 0r . 02 
- -  [ - ' ~  "~'uu ~:- F (u) ~ ]  du dt. ( i . l )  

This mass can also be expressed as 

O (mp) 
F (u) ~ du dt, (1.2) 

where p is the density of the l iquid  (or gas). 

Equating (1.1) to (1.2), we obtain the required equat ion 

, , O~q~ O(mp) dFdu OqDOu "~ F tu) ~ -[- F (u) ~ = 0. (1.3) 

For s teady flow we have  

dF d(p it*-(p 
du du -~" F (u) ~ = 0.  (1.4) 

We express the mass f i l t rat ion ra te  as 

Oq~ / Ou = pOO / Ou, (1.5) 

where '1, is the poten t ia l  of the f i l t ra t ion ra te  averaged over the area 
F(u). Substituting the value  of 0r  into Eq. (1.3) we obtain 

Op O(lJ 0"-~ 
[p "-d~u @ F d F  (u) -~ l - -~-~u  + pF (u) ~ -  + F ( u ) ~ = O .  (1.6) 

We examine  the case of an e las t ic  fluid whose density p as a 
function of pressure p can be expressed approx imate ly  as 

P / P o ' ~ t q - ~ l ( P - - P o ) ,  ~ l ( p  - -p~)  ~ 1 ,  (1.7) 

where P0 is the density at a tmospher ic  pressure P0; ~l is the vo lume-  
e las t i c i ty  coef f ic ien t  of the fluid. 

We assume that  the second term of the expression in brackets in  
(1.6) is neg l ig ib ly  smal l  as compared with its first term.  Equation 
(1.6) becomes  

dF O0 r 02q~ ~ ~ t  p) =0 .  
P kT-J-57 ~- F (~) ~W-J + F(~) (1.8) 

This equat ion can  be used to solve the problem of nonplanar mo-  
t ion of an e las t ic  fluid in an elast ic  layer .  

2. Steady f i l t ra t ion in an e l l ipsotda l  ax i symmet r l c  field. Let the 
borehole expose an inf in i te  layer .  The f i l ter  in  the cy l indr ica l  bore-  
hole is of length  2h and extends over a straight segment  of the borehole 
axis. We assume that  the borehole  fi l ter  is a prolate  el l ipsoid of revo- 
lut ion of focal  length 2h and tha t  the fi l ter  wal t  is an equipotent ia l  
surface. The mass discharge of the borehole is M = eonst, 

Under these conditions the equipotent ia l  surfaces are eonfocal  e l -  

lipsoids of revolut ion with semiaxes  a ,  B, and y,  

a = h ch u, 1~ = y = h sh u.  (2,1) 

Where u is the value  of the degenera te  e l l ipsoida l  coordinate  which 

determines  the equipotent ia l  surface u = const. 
The coordinate u and the po ten t ia l  q are re la ted  by 

dM I dY = Oq~ [ ou , (2.2) 

where dM is the mass flow rate  through the area dF. 
Separat ing var iables  in (2 .2)and integrat ing,  we obtain the mass 

flow ra te  M through the ent i re  area F(u) of tile equipotent ia l  surface 

M = !~) -~u dF = @ u  F (u) = q (u, v., w,) F (u ) (2.3) 

Where d q /du  = q(u, v*, w=)is  the mass f i l t rat ion rate  averaged over 

the area F and corresponding to some average  values of the coordinates 
v, and w,. 

From (2.3) we obtain 

d 9 / d u  = M / F ( u ) ,  (2.4) 

where 

F (u) = 2nct~ ( ] / ' ~  
arc sin 8 

F (u) = 4~h2~ (u), ~ (u) = 

= 1/~ sh u ch u (th u ~- chu arc sin (1 :ch u). (2.6) 

Equation (2.4) can be regarded as the first in tegra l  of Eq. (1.4). 
Its solution is 

M I du q~ = 4 " ~  ~ - ~  C (C = const). (2.7) 

Let us rep lace  the coordinate  u by the new dimensionless var iab le  
r / h  according to the condi t ion 

(r / h)]" = ~ (u) (1 ~< / = const ~ 2). (2.8) 

Here r is expressed in units of length.  We find from (2.5) that 

F (u) = 4z~h ~-i r i = F 1 (r). (2.9) 

With Eqs. (2.4), (2.6), and (2.8), we wri te  

dqo / du = M / 4 zth ~-j ri = dq~* / dr, (2.10) 

where qo* is some function corresponding to the po ten t ia l  q~. 
With Eqs. (2.9) and (2.10) we a l ter  Eq. (1.4). We have  

dF(u) d~ f (h)J-1 dcp* dr 
d~ du = 4~h~ - -  dr du ' 

a~T d~-~* dr ( r ) J  d~-~p* dr 
F ( u ) ~ F l ( r ) ~  =4z~h ~ "~ dr ~ d~ (2.11) 
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Substituting Eq. (2.11) into Eq. (1.4), we obtain 

d~(p* / d(P* 
dr 2 -t- r dr - - 0  (for r:--I=0). (2.12) 

The solution of Eq. (2.12) is 

M (p* = 4 ~ ( t - 1 )  (�88 + c* (c* = ~o~)  (2.13) 

(see (2.10)). 
We see from F-qs. (2.5) and (2.8) that  in the case j = 1 the area of 

any equipotent ia l  surface r = const is equal  to the area of the side sur- 

face  of a cyl inder  of he ight  h and radius r; Eq. (2.12) is s imply the 

equat ion of p lane  r ad ia l  flow in cy l indr ica l  coordinates.  The other ex-  
t r eme  case j = 2 corresponds to spher inal ly  r ad ia l  flow and a spherinal  
coordinate  system; the area of the equipotent ia l  surface r = const in this 
case is 4~rr z (see (2.5) and (2.8)). 

-~ -  ~ ~ T , - 7 ~ -  b ~--~- ~ - h - , ~  
I 
I 

0. t  I 1 .t03 
0.01 [ 1.053 
0.00t 1.035 

t . 24  l 12.95 
t . t 2  93 
1.08 750 

5.300 
5.225 
5.225 

When the length  of the borehole fi l ter  is rather  large as compared 

with the radius r b, e . g . ,  h ___ 10r b we can  qui te  r ead i ly  de te rmine  the 
va lue  of the constant  j u n d e r t h e  condit ion 1 < j < 2. W e l i m i t  ourselves 

to these eases. Equations (2.6) and (2.8) y ie ld  the values of g(Ub) at  

the  borehole wal l ,  

(Ub) = r b / h  for ] = t ,  ~ (%) = (rb/h)  ~ for ] = 2.  

We therefore have  

�9 lg ~ (uc) 
~ ( u c ) =  (@_)s ,  or / - - l g ( r d h )  (2.14) 

a t  the borehole wal l  for 1 < j < 2. 
We de te rmine  g(Ub) from Eq. (2.6), set t ing shu b ~ rb/h <- 0.1. 
St ipulat ing the conditions at  the boundaries of some region of space 

between the feed surface and the borehole, we obtain a formula for 

the mass discharge of the borehole.  
Let ~0. = q~ for t = t b and ~o* = ~o c for r = r c, where r c is the coordi-  

na t e  of the feed surface.  From (2.13) we obtain 

M --  4~h~-J (1 - -  i) ((Pc* - -  (Pb*) 
4-J  _ ,~-J 

= 4uh ~-~ r~ ( i  --/)((Pc* - -  %* ) (2.15) 

rb [ (r cjr  b)l-j  _ t ] 

Noting that  (by (2.5) and (2.9)) the quanti ty 

4nh2-i rbJ = 4~h~g (%) = F (u 0 

gives  the area,  we use (2.14) to transform (2.15) into 

4~h (~r - -  %*)  

M :  ~( rb /h  , rc/rb) ln(h /rb)  , (2.16) 

, - ~ ]  j . , n h - ~ b  ) . (2 .~7)  

If r c is so la rge  that  we can  set (rc/rb) l - j  = 0, we have  

: in h~(Ub) 

Let us i m a g i n e  a layer  bounded above by an impe rmeab l e  hori-  
zon ta l  s tratum and which occupies the lower ha l f - space .  Let the 

s t ra tum be exposed by a ver t ica l  borehole  sunk to a depth h into the 

layer ,  

The known formulas for the mass discharge M 1 of a ve r t i ca l  bore-  
hole  in  a semi in f in i t e  layer  al low us to comider  such a borehole equiv-  
a len t  to a hydrodynamica l ly  perfect  borehole in a layer  of thickness 
h with a feed surface of radius vh, where 1 < v < 2. Polubarinova- 
Kochina [1] proposed the following formula for the discharge M l of 

a ve r t i ca l  borehole in a semi inf in i te  layer :  

2nh ((Pc - -  r 
M I =  l n ( ~ r ~ h ] r b  ) (v = ~r~) .  (2.18) 

In this case the discharge can also be computed with the aid of 
formula (2.16), in which the coeff ic ient  4 must  be replaced by the 

coef f ic ien t  2 ( the ha l f - space  belongs to the layer) .  The  discharges c a l -  
cu la ted  by means  of Eqs. (2.16) and (2.18) co inc ide  i f  

~l (r b / h, r c / rb) In (h / rb) = In ( ]/ '3h / rb). (2.19) 

Equation (2.19) defines in this case the coordinate r c of the feed 
surface for tha t  region of the layer  exposed by the borehole. 

The coordinate  r c can  be found from (2.19) with the aid of (2.17). 

The tab le  below enables us to compare  the quant i t ies  j ,  7} (rb/h,  rc / rb) ,  

and r c / r  b for 

rb/ h = 0.t, 0.01, and 0.001 

in the case of a borehole exposing an inf in i te ly  deep layer to a depth 
h; i t  is equiva len t  to a hydrodynamica l ly  perfect  borehole in a layer 

of thickness h and with a radius of the feed surface equal  to ( 3 / / 2 h  

(see condit ion (2.19)). The tab le  also contains values of ~ (rb/h,r cor- 

responding to the case of an inf in i te ly  distant  feed surface. The com-  
putations were comple ted  with Eqs. (2.14), (2.17), and (2.19). 

Only for rb /h  = 0.1 does the coordinate r k exceed the length h of 
the  filter; in the remain ing  cases r c < h. As r c "-~ ,o the discharge M 
can diminish  by more than 4.8 t imes.  (This follows from Eq. (2.16) and 

the table .  ) 

8. A borehole of finite length in an unbounded layer under elastic 

conditions. Let us consider the motion of a fluid elastic mass in an un- 

bounded e las t ic  layer  tapped by a borehole containing a f i l ter  of length 
2h. We assume tha t  the pe rmeab i l i t y  k of the layer  and the dynamic  

viscosity # of the  fluid are constant.  This yields the following expres- 
sion for the po ten t i a l  of the average f i l t rat ion rate  d~*/dr,  

r  = k p / ~  + c .  (3.1) 

Where p is the reduced pressure and C is some constant.  Let the 
e las t ic  properties be re la ted  by the  expression 

Orn / Ot = ~bOP / a t .  (3.2) 

Where m is the porosity of the layer and /hb is its vo lume e las t i c i ty  
coeff ic ient .  

We represent the e las t ic  properties of the l iquid as 

op / ot = P[~x Op / dt, (3.3) 

where/51 is the vo lume-e l a s t i c i t y  coeff ic ient  of the l iquid.  With (3.2) 
and (3.3) we can  wri te  

0 (rap) [ dt = p (m~l + ~)  Op / Or. (3.4) 

In accordance  with (2.9) and (3.1), Eq. (1.8), in which r is the 
p r inc ipa l  coordinate ,  takes the form 

(0"-p s  0p 
"Tiff 2 "k r Or] 0-7" 

(~= k ~* = m ~ + ~ ) .  (3.5) ~--~, 

H e r e ~  is the p iezoconduc t iv i ty  coeff ic ient  of the layer ,  and /5* is 
the  v o l u m e - e l a s t i c i t y  coeff ic ient .  

Equation (3.5) can  be in terpreted as the  hea t -conduc t ion  equat ion 
in a (j + 1 ) -d imens iona l  space.  The  solution of this equat ion can  be 
constructed by ana logy  with an instantaneous sink in a (j + t ) - d i m e n -  
sional  space [2].  A s imi la r  analogy was used to solve the equation 
corresponding to degenera te  isotropie turbulence for very smal l  pul-  
sation rates [ 3 - 5 ] .  In the  case of an instantaneous sink the solution 



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 29 

of Eq. (3.5) can be written as 

p (r, t) = C~ - -  C~.t -'& g +~) exp ( - -  r '  1 4ut) .  (3.67 

Let us determine the constants C~ and C~. Let p = P0 for t = 0. Yet 
for r > 0 we have 

,~oulim exp (-- &)]=O. (3.7) 

Hence, C1 = P0. 
We can therefore write 

A p  = p ,  - -  p (r, t) = Cst -~h (~+~) exp ( - - r  ~ / 4 ut) .  (3.8) 

The volume d.r~ of fluid emerging from an ellipsoidal layer ele-  
ment  dr  = 4~rhZ-J~Jdr is 

d ~  = ~*Ap d~ =4r~hS-~*C~t-' / '( '+~) exp  ( - -  -4~-~ut ) r idr .  (3.9) 

The fluid volume r~ discharged from the entire layer can be deter- 
mined through integration of (3.97 [6] 

o u  

�9 vl=4ghs-J~*Cst"lb(J+l) I r]exp(-- ;"--;2 )dr= 
o 

---- 2uh~-~*C..(4u) '/'d'-~) r ( % ( / +  1)). (3.1o7 

Here F is the gamma  function. 
Taking account of the relationship be tween~ and ~*, we determine 

from (3.10) that  

.rflx 
C~ = 2~+i~kn,l,d_l)h~_iF (i/~ (/q_ t)) �9 (3.11) 

Now let  us turn to the case of a borehole, wkh  a filter of length 
2h, which taps an infinite layer at the initial instant and acts con- 
tinuonsly with a constant volume discharge Q. If an instantaneous 
sink exists at some instant t, we can rewrite formula (3.8) as 

":Jtx (t - -  t') J/~(i+~) • 
Ap -- 2~+jz~• ) kh~_jF (Vs (/-}- 1)) 

• exp ( - -  4U (t-----~)) " (3.127 

Let the sink exist over the t ime interval dt ' .  
The volume of fluid discharged from the layer during the existence 

of the sink is given by 

d'~ = (2 dr' .  (3.13) 

Recalling (3.127 and (3.13), we obtain a formula for the pressure 
drop Ap in the layer during continuous operation of the borehole from 
t '  = 0 to t '  = t  

Q~ l - Ap _ 2~JzhS_~ki~ (~/z (1" -~ t)) ~%(~-~) (t - -  t') % 0+~) X 
0 

r ~ 

(3.1 7 

Substituting 1/( t  -- t ')  = O, we can rewrite Eq. (3.14) as 

Q~ 
Ap -- 2s+Jz~h2_jk ,b.(j_ D F (Vs (I'-F l))  

• ~ 0V'(J-Z) e x p (  - ~ - r z  0) d 0 =  

0o 

t-i (( -- t r~ 
8~khI' (~/~ ( / -~  1)) ' ' 

, (;-, .~ 
% = ~ - ,  r 2 ' 4 ~  = 

~ z  v,d-sle -~d~ (n " r'- . ----- , - - - - ~ )  
R 

(3.15) 

gO 40 60 80 /gO 

Here (j - 1)/2, r2/4~t)  is an incomplete gamma function [6],  

P (% (i-- i), r2/4~t) = 

r (,I~ (i + 2)) 

where 

__ 2 T (V~ ( / - -  t), f'/4• (3.16) 
- -  i - - i  r ( y ~ ( i +  t)7 ' 

B 1 

0 

With the familiar recursion formula for the gamma  function, we 
obtain [7] 

u ( 1 / ~ ( / - -  l) ,  rZ/4• 
r (% ( / +  ~)) 

,-,)] - - / - - t  

i 
P (2~t '  l ' - - i ) =  2(1/2(1. 3)~ i, (1/2 (/ ~ t)) X 

cx) 

(3./77 

On the basis of (3.177 from (3.157 and (3.167, we find ~hat 

A p =  1,7) /--i -- 

- -  8z~kh \ h ' ' 

(3.187 

Let us compare the pressure drops at the walls of two boreholes, 
one of which operates with a comtant discharge in a layer of thickness 
2h, while the other is equipped with a filter of finite length 2h and 
taps an infinitely thick layer with the same discharge. The motion in 
the former case is plane-radial ,  and in the latter case it is three-di-  
mensionai and axisymmetrie.  

The pressure drop Apb at the borehole walls in the first case is, as 
we know, proportional to the integral exponential function - -E i ( - r~ /  
/4zt) ;  in the second case it is proportional to the function f ( r b / h ,  r~/  
/4~t )  (see (3.187). To find the corresponding values of these functions 
it is sufficient to complete  the necessary comparison. 

The curves of the functions --Ei(r~/4~t) and :f(r~/h, r~/2~ot7 appear 
in the figure. The axis of abscissas represents the dimensionless param- 
eter ~ = 2~tt/r~ and the axis of ordinates represents the dimensionless 
quantity p0 = (8~rkh/Q~t) Ap b equal to the function - E i ( - r ~ / 4 ~ t )  in the 
case of curve 1 and to the function Y(rb/h, r~/2• in the case of curve 
2. We assume that the quantity rb /h  is 0.1, which (by (2.].477 means 
that j ~ 1.1. 

The curves reflect the greater intensity of the pressure-drop pro- 
cess for a borehole in an infinitely thick layer as compared with the 
same process for a perfect borehole in a layer of finite thickness. We 
see that the difference between the intensities is not large. 
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